

Features & Benefits

- Rugged Module for Military Applications
- High Efficiency, High Power Density
- Wide Input Voltage Range
- Programmable Output Voltage and Current
- Charger for Lead-Acid Batteries (Flooded, GEL and AGM) and Li-Ion Batteries (Lithium Iron and Lithium Manganese)
- Droop Current Sharing & Internal ORing Diode
- Multiple Units in a Redundant or Parallel System
- RS-485 Communication
- Input Under Voltage Protection
- Input/Output Over Voltage Protection
- Short Circuit Protection
- Over Temperature Protection
- Reverse Battery Protection
- Baseplate Conduction Cooled
- Flanged Baseplate Version Available

Compliance

Module is designed to meet:

- MIL-STD-461G
- MIL-STD-810G

Typical Applications

- Military/Defense Power Supplies
- Armored Vehicles
- Land Platforms
- Communications and Radar Systems

Product Ratings	
$V_{\rm IN} = 250 - 425 \ V_{DC}$	$V_{OUT_TYP} = 28 V_{DC}$
$V_{IN_NOM} = 270 V_{DC}$	$I_{OUT_MAX} = 120 A_{DC}$ $P_{OUT_MAX} = 3360 W$

Product Description

KMPM01 is a small and efficient isolated DC-DC converter, designed for harsh environments that require a steady 28V DC power supply. It can operate on a wide range of DC input voltages, from 250V to 425V. The design of the converter allows for it to operate at higher than rated power until thermal limits are reached. The module does not require a fan for cooling, relying instead on baseplate cooling technology for silent operation.

The KMPM01 is engineered to perform reliably under extreme environmental conditions. It comes with advanced protection features against external faults and disturbances, meeting major military standards. Thanks to KOLT's innovative engineering, the converter has a compact design that provides high power density and performance. The module can be easily configured at the factory to fit specific electrical and mechanical requirements of the application.

Size: $166 \times 130 \times 36.5$ mm

Electrical Characteristics

Input Characteristics					
Parameters	Comments	Min	Тур	Max	Unit
Input Voltage	Continuous	250	270	425	V_{DC}
Input No Load Current	@Nominal input voltage		200	-	mA _{DC}
Input Ripple Current	@Rated output power	-	215	-	mA _{RMS}

Output Characteristics					
Parameters	Comments	Min Typ Max		Unit	
Output Voltage	User settable	User settable 18 28 32.2		32.2	V_{DC}
Output Current Limit	User settable 0 100 120		A_{DC}		
Output Power		-	2800	3360	W
Output Ripple and Noise	@20 MHz Bandwidth	-	-	280	$mV_{\mathrm{pk-pk}}$
Line Regulation	Over the full range of line input voltage	Insignificantly small		-	
Load Regulation	From 10% load to full load, nominal input voltage	- 100 -		mV	
External Load Capacitance		700		μF	

General Characteristics					
Parameters	Comments	Min	Тур	Max	Unit
Efficiency	@Rated output power	94%	-	-	-
Turn-on Delay	Factory settable, health check	-	-	500	ms
Soft-Start Time	Factory settable	-	-	1	S
Power Density	@Rated output power	-	3554	4265	W/dm³
Weight		-	1.2	-	kg
Length	Connectors lengths are not included -		166	-	mm
Depth	- 130 -		mm		
Height	- 36.5 -		mm		
Cooling	Baseplate Cooling				
Built-in Test Feature	DC OK, Remote Error Sensing				

Protections					
Parameters	Comments	Min	Тур	Max	Unit
Input Under Voltage Protection	When the voltage returns within the	215	220	225	V_{DC}
Input Over Voltage Protection	normal limits, unit resumes operation automatically	435	440	445	V_{DC}
Output Over Current Protection	Fully electronic against over-load	-	-	130%	IOUT_TYP
Output Over Voltage Protection		-	-	115%	Vout_typ
Output Short Circuit Protection	Fully electronic against over-load and continuous short-circuit conditions				
Over Temperature Protection	Automatically resumes operation when the heat sink temperature decreases below 70°C	-	80	-	°C
Dattowy	Prevention of battery discharge when charger is off				
Battery	Reverse polarity				

Isolation Characteristics					
Parameters	Comments	Min	Тур.	Max	Unit
Insulation Resistance	Input to Case	-	>100	-	МΩ
Isolation Voltage	Input to Output	-	-	1500	$V_{ m DC}$
Isolation Voltage	Input to Case	-	-	1500	$V_{ m DC}$
Isolation Voltage	Output to Case	-	-	1500	V_{DC}

Environmental Characteristics					
Parameters	Standard / Method	Min	Тур	Max	Unit
Operational Temperature	MIL-STD-810G Method 501.5/502.5 Procedure II	-32	-	+50	°C
Storage / Transport Temperature	MIL-STD-810G Method 501.5/502.5 Procedure I	-40	-	+63	°C
Operational Low Pressure	MIL-STD-810G Method 500.5 Procedure II	-	-	10000	ft
Storage / Transport Low Pressure	MIL-STD-810G Method 500.5 Procedure I	-	-	15000	ft
Parameters	Standard / Method	Waveform	Peak Value	Pulse Duration	Axis
Shock	MIL-STD-810G	Sawtooth	20g	11 ms	±X, ±Y, ±Z
SHOCK	Method 516.6 Procedure I	Half-Sine	10g	11 ms	±X, ±Y, ±Z
Parameters	Standard / Method	Catego	ory	Platform	Vehicle
		Category 4		Secured Cargo	Truck Transportation and Composite Wheeled Vehicles
Vibration	MIL-STD-810G Method 514.6 Procedure I	Category 8		Aircraft	Propeller
		Category 10		Watercraft	Marine Vehicles
		Categor	y 11	Railroad	Train
		Category 20		Ground Vehicles	Wheeled and Tracked Vehicles
			Category 21		Marine Vehicles
Parameters	Standard / Method	Condition			
Fungus	MIL-STD-810G Method 508.6	Analysis of the degree of inertness to fungus grow the components.		ungus growth of	
Solar Radiation	MIL-STD-810G Method 505.5 Procedure I	A2			
Humidity	MIL-STD-810G Method 507.5 Procedure II	≥ %95 Relative @30°C			
Parameters	Standard / Method	Test			
EMI/EMC*	MIL-STD-461E b MIL-STD-461G a	CE102 a, b CS101 a, b CS114 a, b CS115 a CS116 a, b CS118 a RE101 b RE102 a, b RS101 b RS101 a			

^{*}Tested at the system level with an EMI filter installed at the input.

^a Ground Army

^b Surface Ships

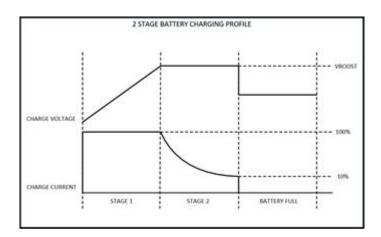
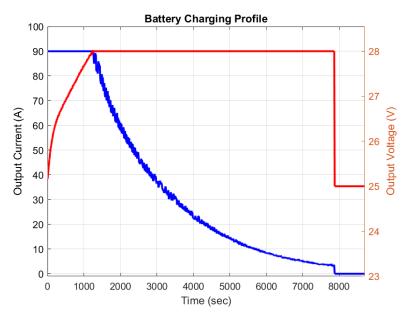
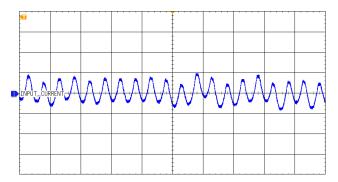
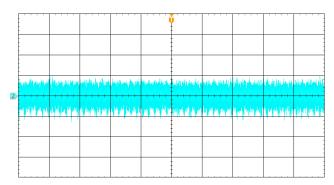
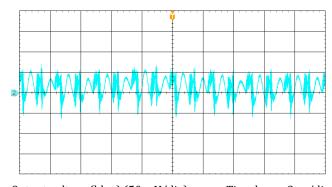




Figure 1. Two stage battery charging profile

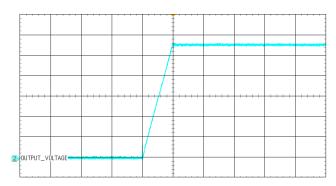

Figure 2. Battery charging profile based on measured battery current and battery voltage data. Maximum power delivered is 2520 W.

Input Current (navy blue) (500 mA/div) Time base: 10 μs/div


Figure 3. Input current ripple at nominal input voltage and rated load current (AC Coupled), Bandwidth: 20 MHz

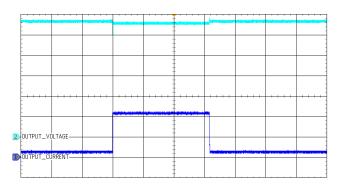
Output voltage (blue) (100 mV/div)

Time base: 10 ms/div


Figure 4. Output voltage ripple at nominal input voltage and rated load current (AC Coupled), Bandwidth: 20 MHz

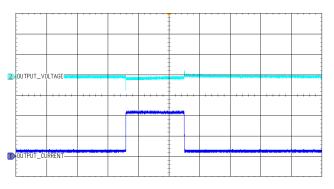
Output voltage (blue) (50 mV/div)

Time base : 8 μs/div


Figure 5. Output voltage ripple at nominal input voltage and rated load current (AC Coupled), Bandwidth: 20 MHz

Output voltage (blue) (5 V/div)

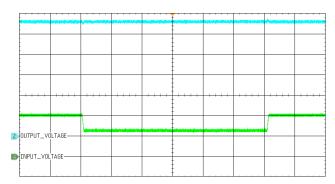
Time base: 1 s/div


Figure 6. Start-up waveform at rated load current and nominal output voltage

Output voltage (blue) (5 V/div)
Output current (navy blue) (50 A/div)

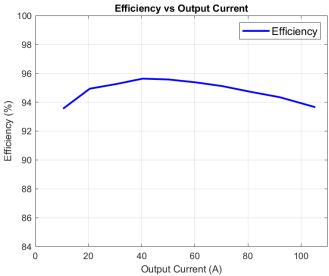
Time base : 200 ms/div

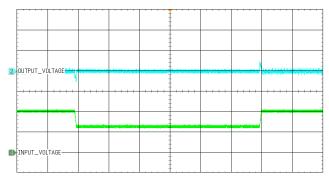
Figure 7. Load transient response: from 10% to 100% and from 100% to 10% at nominal output voltage (DC Coupled)



Output voltage (blue) (5 V/div)
Output current (navy blue) (50 A/div)

Time base: 100 ms/div


Figure 8. Load transient response: from 10% to 100% and from 100% to 10% at nominal output voltage (AC Coupled)



Output voltage (blue) (5 V/div) Input voltage (green) (200 V/div) Time base: 200 ms/div

Figure 9. Line transient response: from 425 V_{DC} to 250 V_{DC} and from 250 V_{DC} to 425 V_{DC} at nominal output voltage (DC Coupled)

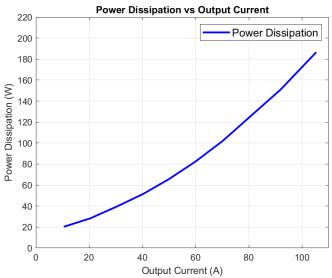
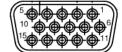


Figure 10. Efficiency versus output current at nominal input voltage

Output voltage (blue) (1 V/div) Input voltage (green) (200 V/div) Time base: 200 ms/div

Figure 11. Line transient response: from 425 V_{DC} to 250 V_{DC} and from 250 V_{DC} to 425 V_{DC} at nominal output voltage (AC Coupled)

Figure 12. Power dissipation versus output current at nominal input voltage


Connector Configuration

Input Connector DEMM9PL			
Pin	Signal		
1	DCIN		
2	DCIN		
3	NC		
4	HVGND		
5	HVGND		
6	DCIN		
7	NC		
8	NC		
9	HVGND		
$ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} $			

Output Terminals 7461098			
Pin	Signal		
+	OUT		
-	OUT RTN		

Input Signal Connector 10090926-P154XLF			
Pin	Signal		
1	NC		
2	NC		
3	NC		
4	NC		
5	NC		
6	NC		
7	NC		
8	NC		
9	NC		
10	NC		
11	NC		
12	NC		
13	NC		
14	NC		
15	NC		

Mechanical Drawings

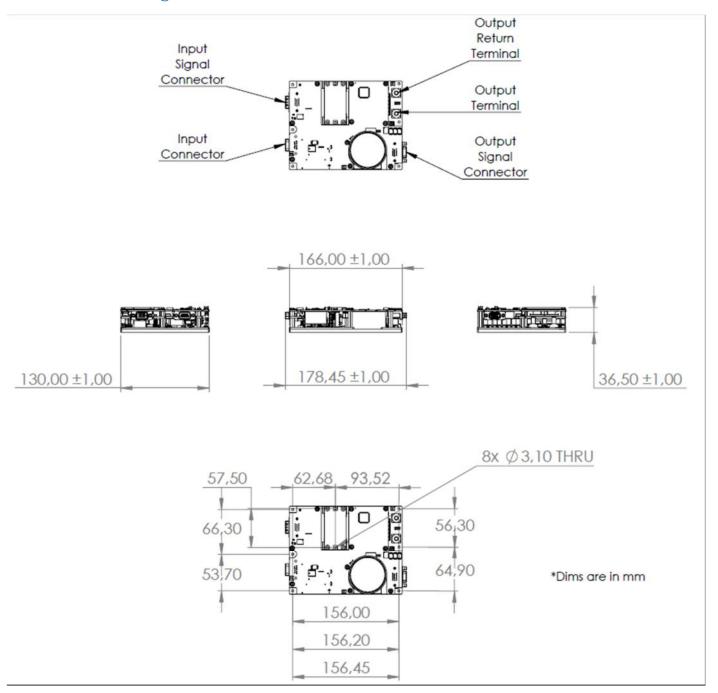
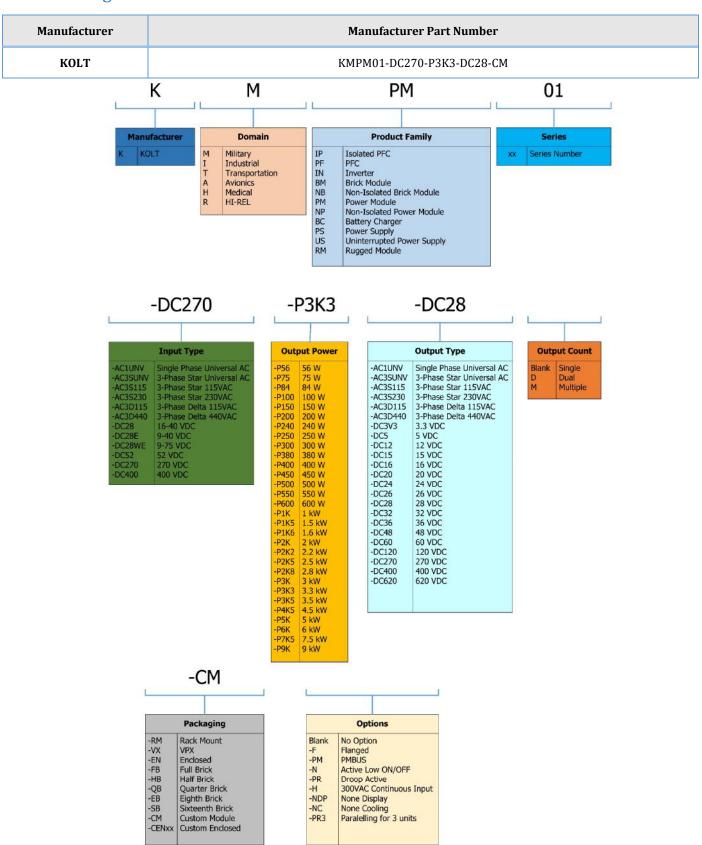



Figure 13. Mechanical Dimensions

Material Finish Sealed Aluminum Alloy 6061-T6 Case

Part Ordering Information

Not all combinations make valid part numbers, please contact KOLT for availability.

Revision History

Revision	Date	Description	Page Number(s)
A-PC1	25.04.2023	Initial Release	-
A-PC2	27.04.2023	Second Release	<u>-</u>