

## Features & Benefits

- Isolated DC/DC Rugged Module
- EMI Filter Module is included
- Communication Capability
- 90% Efficiency at Full Load
- Input Under/Over Voltage Lockout
- Input Phase Reversal Protection
- Output Over Voltage Protection
- Output Short Circuit Protection
- Output Over Load Protection
- Thermal Shutdown
- Remote ON/OFF Control
- Output Voltage Remote Sense
- Output Voltage Trim Range +10%, -40%
- Baseplate Cooled

# Compliance

Converter is designed to meet:

- MIL-STD-461G
- MIL-STD-810G
- MIL-STD-1275E

# **Typical Applications**

- Military/Defense Power Systems
- Armored Vehicles
- Land Platforms
- Aerospace Platforms
- Communications and Radar Systems

| Product Ratings      |           |  |  |  |  |  |  |
|----------------------|-----------|--|--|--|--|--|--|
| V <sub>IN</sub>      | 18 – 40 V |  |  |  |  |  |  |
| V <sub>OUT</sub>     | 28 V      |  |  |  |  |  |  |
| I <sub>out_max</sub> | 10.7 A    |  |  |  |  |  |  |
| P <sub>OUT_MAX</sub> | 300 W     |  |  |  |  |  |  |

# **Product Description**

KMRM01-DC28-P300-DC28-CM is a 300 W DC/DC converter in rugged module that operates from nominal 28 V input and generates 28 V isolated output. It is designed to meet MIL-STD-461G EMI requirements with the built-in EMI filter module and has superior noise and ripple performance. Converter is fully protected to operate reliably under all kinds of disturbances. Casing is creatively designed to provide efficient cooling to facilitate reliable operation up to 100 °C base plate temperature.



Size: 100 x 80 x 23.4 mm [3.94" x 3.15" x 0.92"]

Weight: 340 ± 20 g



## **Signals and Functions**

+IN: Input supply voltage positive line.

-IN: Input supply voltage return line.

**ON/OFF**: Remote on/off pin. Referenced to **-IN** input return line. Should be pulled to input return line to turn the converter on. Can be left open to turn off the converter.

CHASSIS: Chassis connection for cabling purposes.

+OUT: Output voltage positive line.

-OUT: Output voltage return line.

**+SNS**: Remote sense positive line. Could be used to regulate output voltage at load terminals. Should be connected to positive side of Load. Using sense function with an ORing circuit may cause unstable output voltages. It is recommended to not connect this pin while using an ORing circuit.

-SNS: Remote sense negative line. Could be used to regulate output voltage at load terminals. Should be connected to negative side of Load. Using sense function with an ORing circuit may cause unstable output voltages. It is recommended to not connect this pin while using an ORing circuit. **TRIM**: Trim pin can be used to increase or decrease output voltage within specified limit via a resistor. Trim up and down equations are given in Basic Operation and Features section.

**PMBUS\_SDA\***: I2C communication data line. Internally pulled up to 3.3 Vdc via 10 k $\Omega$  resistor. Can be left open if not used. Referenced to output return line(-OUT).

**PMBUS\_SCL**\*: I2C communication clock line. Internally pulled up to 3.3 Vdc via 10 k $\Omega$  resistor. Can be left open if not used. Referenced to output return line(-OUT).

**PMBUS\_ADDRESS\***: I2C communication address selection line. Can left open or connected to Output return line to choose I2C address of converter between 0x81 and 0x83 respectively. Referenced to output return line(-OUT).

**NC**: DO NOT CONNECT. Connecting these pins to any other terminal may damage the converter.

All pins with identical function and name should be connected together for best results.

\*: Available on PMBUS option.

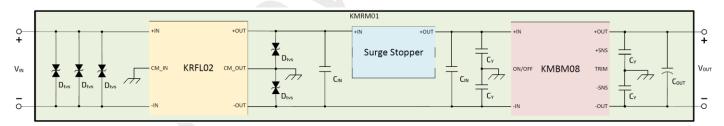



Figure A. KMRM01 internal block diagram

KRFL02: EMI Filter Module

KMBM08: Isolated DC/DC Converter Module
Cv: CHV1206N2K0472KXT (4700 pF 2kV X7R Ceramic Capacitor)
CIN: CL32Y106KCVZNWE (11 x 10uF 100V Ceramic Capacitor)
Cour: A759KS476M1KAAE045 (2 x 47uF 80V Aluminum-Polymer Capacitor)
Drvs: 5.0SMDJ100CA (Bi-directional 100Vwm TVS Diode)



## **Electrical Characteristics**

All data are obtained at nominal line and full load unless otherwise specified. (Ta = 25 °C)

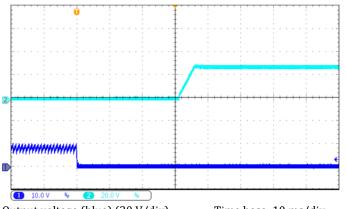
| Input Characteristics                  |                    |      |      |      |      |  |  |  |  |  |
|----------------------------------------|--------------------|------|------|------|------|--|--|--|--|--|
| Parameters                             | Notes & Conditions | Min  | Тур  | Max  | Unit |  |  |  |  |  |
| Non-Operating Input Voltage Range      | Continuous         | -40  |      | 60   | V    |  |  |  |  |  |
| Input Voltage Transient                | 50ms               |      |      | 50   | V    |  |  |  |  |  |
| Operating Input Voltage Range          |                    | 18   | 28   | 40   | V    |  |  |  |  |  |
| Input Under Voltage Turn-On Threshold  |                    | 15   | 16   | 17   | V    |  |  |  |  |  |
| Input Under Voltage Turn-Off Threshold |                    | 14   | 15   | 16   | V    |  |  |  |  |  |
| Input Over Voltage Turn-On Threshold   |                    | 35.5 | 36.5 | 37.5 | V    |  |  |  |  |  |
| Input Over Voltage Turn-Off Threshold  |                    | 40.5 | 41.5 | 42.5 | V    |  |  |  |  |  |
| No-Load Input Current                  |                    |      | 283  | 300  | mA   |  |  |  |  |  |
| Disabled Input Current                 |                    |      | 9.5  | 12   | mA   |  |  |  |  |  |
|                                        | ·                  |      |      | •    |      |  |  |  |  |  |

| Output Characteristics                   |                                         |     |       |      |      |  |  |  |  |  |
|------------------------------------------|-----------------------------------------|-----|-------|------|------|--|--|--|--|--|
| Parameters                               | Notes & Conditions                      | Min | Тур   | Max  | Unit |  |  |  |  |  |
| Output Voltage                           |                                         |     | 28    |      | V    |  |  |  |  |  |
| Output Voltage Set Point                 |                                         |     | ± 1   |      | %    |  |  |  |  |  |
| Output Voltage Line Regulation           |                                         |     | ± 2   |      | %    |  |  |  |  |  |
| Output Voltage Load Regulation           |                                         |     | ± 0.2 |      | %    |  |  |  |  |  |
| Output Voltage Ripple and Noise (pk-pk)  | 20 MHz bandwidth                        |     | 350   |      | mV   |  |  |  |  |  |
| Operating Output Current Range           |                                         | 0   |       | 10.7 | А    |  |  |  |  |  |
| Output Current Limit                     |                                         | 11  |       |      | А    |  |  |  |  |  |
| Output Current Shutdown Limit            |                                         |     | 15.5  |      | А    |  |  |  |  |  |
| Output DC Current-Limit Shutdown Voltage |                                         |     | 14    |      | V    |  |  |  |  |  |
| Output Power                             |                                         |     | 300   |      | W    |  |  |  |  |  |
| Maximum Output Capacitance               | Nominal output voltage                  |     |       | 3    | mF   |  |  |  |  |  |
| Input Voltage Transient Response         | 50 V/ms; See Figure D                   |     |       |      |      |  |  |  |  |  |
| Step Change                              | 28V to 40V to 28V input voltage         |     | 0.5   |      | V    |  |  |  |  |  |
| Settling Time                            | Within 1% output voltage                |     | 2     |      | ms   |  |  |  |  |  |
| Load Current Transient Response          | 1 A/ $\mu$ s; See Figure F and Figure C |     |       |      |      |  |  |  |  |  |
| Step Change                              | 50% to 75% to 50% output load           |     | 0.8   |      | V    |  |  |  |  |  |
| Settling Time                            | Within 1% output voltage                |     | 1     |      | ms   |  |  |  |  |  |
| Output Voltage Trim Range                | Across Sense+ and Sense- Pins           | -40 |       | +10  | %    |  |  |  |  |  |
| Output Over-Voltage Protection           |                                         |     | 33.6  |      | V    |  |  |  |  |  |

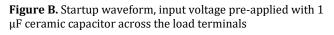


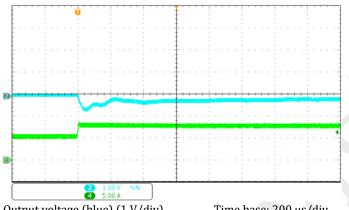
| General Characteristics                    |                             |     |      |      |                      |  |  |  |  |  |  |
|--------------------------------------------|-----------------------------|-----|------|------|----------------------|--|--|--|--|--|--|
| Parameters                                 | Notes & Conditions          | Min | Тур  | Max  | Unit                 |  |  |  |  |  |  |
| Efficiency                                 | From half load to full load | 90  |      | 91.8 | %                    |  |  |  |  |  |  |
| Turn-On Transient Time                     | Within 90% output voltage   |     | 35   |      | ms                   |  |  |  |  |  |  |
| Turn-On Transient Output Voltage Overshoot | Maximum output capacitance  |     | 1    |      | %                    |  |  |  |  |  |  |
| Soft-Start Time                            | Within 90% output voltage   |     | 5    |      | ms                   |  |  |  |  |  |  |
| Switching Frequency                        |                             |     | 150  |      | kHz                  |  |  |  |  |  |  |
| Non-Operating ON/OFF Pin Voltage           | Continuous                  | -1  |      | 60   | V                    |  |  |  |  |  |  |
| ON/OFF Control On-State Voltage            |                             | -1  |      | 10   | V                    |  |  |  |  |  |  |
| ON/OFF Control Off-State Voltage           |                             | 16  |      | 40   | V                    |  |  |  |  |  |  |
|                                            | Ground Begin, 30°C Ta       |     | 2947 |      | 10 <sup>3</sup> Hrs. |  |  |  |  |  |  |
| MTBF                                       | Ground Fixed, 40°C Ta       |     | 308  |      | 10 <sup>3</sup> Hrs. |  |  |  |  |  |  |
|                                            | Ground Mobile, 45°C Ta      |     | 107  |      | 10 <sup>3</sup> Hrs. |  |  |  |  |  |  |
| Over Temperature Shutdown Trip Point       |                             |     | 115  |      | °C                   |  |  |  |  |  |  |
| Over Temperature Shutdown Hysteresis       |                             |     | 15   |      | °C                   |  |  |  |  |  |  |

| Isolation Characteristics                 |                             |  |      |  |                 |  |  |  |  |  |  |
|-------------------------------------------|-----------------------------|--|------|--|-----------------|--|--|--|--|--|--|
| Parameters Notes & Conditions Min Typ Max |                             |  |      |  |                 |  |  |  |  |  |  |
| Insulation Resistance                     | 500V <sub>DC</sub>          |  |      |  |                 |  |  |  |  |  |  |
| Output to Base Plate                      |                             |  | 1    |  | GΩ              |  |  |  |  |  |  |
| Isolation Voltage                         | 60s dwell, 1mA trip current |  |      |  |                 |  |  |  |  |  |  |
| Input to Output                           |                             |  | 1000 |  | VDC             |  |  |  |  |  |  |
| Input to Chassis                          |                             |  | 100* |  | V <sub>DC</sub> |  |  |  |  |  |  |
| Output to Chassis                         |                             |  | 1000 |  | VDC             |  |  |  |  |  |  |


\* There are TVSs with Reverse Standoff voltage of 100 V for lightning protection at the input. See Figure A.

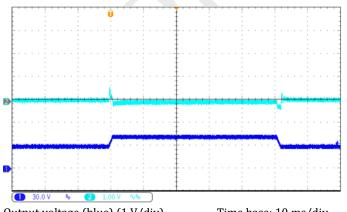



| Environmental Characteristics           |                                                          |             |                                              |                         |                                      |                   |                  |  |  |  |
|-----------------------------------------|----------------------------------------------------------|-------------|----------------------------------------------|-------------------------|--------------------------------------|-------------------|------------------|--|--|--|
| Parameters                              | Standard                                                 | Min         | Тур                                          | Max                     | Un                                   | it                | Status           |  |  |  |
| Operational<br>Baseplate<br>Temperature | MIL-STD-810G_CHG-1<br>Method 501.6/502.6<br>Procedure II | -40         | -                                            | +100                    | ം                                    | :                 | Passed*          |  |  |  |
| Storage / Transport<br>Temperature      | MIL-STD-810G_CHG-1<br>Method 501.6/502.6<br>Procedure I  | -55         | -                                            | +125                    | °C                                   |                   | Passed*          |  |  |  |
| Operational<br>Low Pressure             | MIL-STD-810G_CHG-1<br>Method 500.6<br>Procedure II       | -           | -                                            | 3000                    | m                                    |                   | Passed*          |  |  |  |
| Storage / Transport<br>Low Pressure     | MIL-STD-810G_CHG-1<br>Method 500.6<br>Procedure I        | -           | -                                            | 9000                    | m                                    |                   | Designed to Meet |  |  |  |
| Parameters                              | Standard                                                 | Waveform    | Peak Value                                   | Pulse<br>Duration       | Axi                                  | is                | Status           |  |  |  |
| Shock                                   | MIL-STD-810G_CHG-1<br>Method 516.7<br>Procedure I        | Half-Sine   | 10g                                          | 11 ms                   | ±X, ±Y                               | 7, ±Z             | Passed*          |  |  |  |
| Parameters                              | Standard                                                 | Category    | Figure                                       | Platform                | Vehi                                 | cle               | Status           |  |  |  |
|                                         | MIL-STD-810G_CHG-1                                       | Category 4  | 514.7C-2                                     | Secured<br>Cargo        | Tru<br>Transpo<br>and Com<br>Wheeled | rtation<br>posite | Passed*          |  |  |  |
| Vibration                               | Method 514.7                                             | Category 8  | 514.7C-8                                     | Aircraft                | Prope                                | eller             | Passed*          |  |  |  |
|                                         | Procedure I                                              | Category 11 | 514.7C-11                                    | Railroad                | Tra                                  | in                | Passed*          |  |  |  |
|                                         |                                                          | Category 20 | 514.7C-4                                     | Ground                  | Wheeled                              | Vehicles          | Passed*          |  |  |  |
|                                         |                                                          | Category 21 | 514.7D-9                                     | Watercraft              | Marine V                             | ehicles           | Passed*          |  |  |  |
| Parameters                              | Standard                                                 |             | Со                                           | ndition                 |                                      |                   | Status           |  |  |  |
| Salt Fog                                | MIL-STD-810G_CHG-1<br>Method 509.6                       | 24 ho       | ours spray, 24 h                             | ours dry, app           | ied 2 times                          |                   | Designed to Meet |  |  |  |
| Sand and Dust                           | MIL-STD-810G_CHG-1<br>Method 510.6<br>Procedure I/II     |             |                                              | ) μm Dust<br>50 μm Sand |                                      |                   | Designed to Meet |  |  |  |
| Fungus                                  | MIL-STD-810G_CHG-1<br>Method 508.7                       | Analysis of | the degree of in<br>com                      |                         | gus growth                           | of the            | Analysis         |  |  |  |
| Solar Radiation                         | MIL-STD-810G_CHG-1<br>Method 505.6<br>Procedure I        |             | A2                                           |                         |                                      |                   |                  |  |  |  |
| Humidity                                | MIL-STD-810G_CHG-1<br>Method 507.6<br>Procedure II       |             | Passed*                                      |                         |                                      |                   |                  |  |  |  |
| Parameters                              | Standard                                                 |             |                                              | Test                    |                                      |                   | Status           |  |  |  |
| EMI/EMC                                 | MIL-STD-461G<br>Ground Army                              | CE102       | CS10<br>CS11<br>CS11<br>CS11<br>CS11<br>CS11 | 4<br>5<br>6             | RE102                                | RS103             | Passed*          |  |  |  |


\* Verified in a multi-channel power supply.

# KOLT

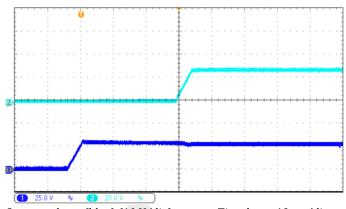



Output voltage (blue) (20 V/div) Time base: 10 ms/div ON/OFF pin voltage (navy blue) (10 V/div)





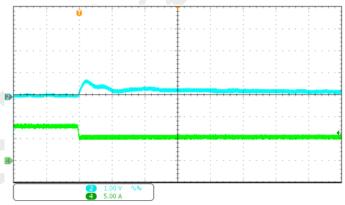
Output voltage (blue) (1 V/div) Output current (green) (5 A/div) Time base: 200 µs/div


**Figure C.** Load current transient response (AC Coupled): from 50% to 75% with 1  $\mu$ F ceramic capacitor across the load terminals (di/dt = 1 A/ $\mu$ s)



Output voltage (blue) (1 V/div) Input voltage (navy blue ) (30 V/div)

Time base: 10 ms/div


**Figure D.** Input voltage transient response (AC Coupled): from 28 V to 40 V and back to 28 V with 1  $\mu$ F ceramic capacitors across the load terminals. (dV/dt = 50 V/ms)



Output voltage (blue) (10 V/div) Tim Input voltage (navy blue ) (25 V/div)

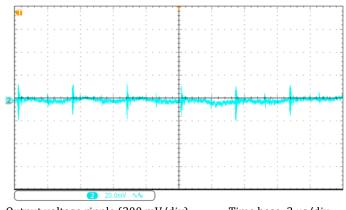

Time base: 10 ms/div

Figure E. Turn on transient at full resistive load with 1  $\mu$ F ceramic capacitor across the load terminals



Output voltage (blue) (1 V/div) Output current (green) (5 A/div) Time base: 200 µs/div

**Figure F.** Load current transient response (AC Coupled): from 75% to %50 with 1  $\mu$ F capacitor across the load terminals. (di/dt = 1 A/ $\mu$ s)



Output voltage ripple (200 mV/div)

Time base: 2 µs/div

Figure G. Output voltage ripple at nominal input voltage and full load current with 1  $\mu$ F ceramic capacitor across the load terminals (Bandwidth: 20 MHz)

# KOLT

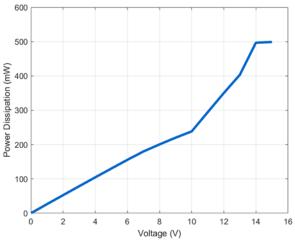
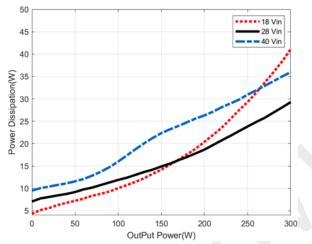
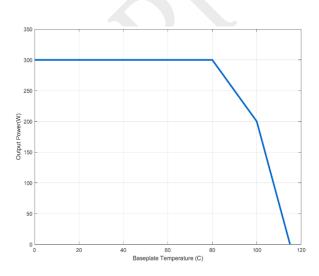
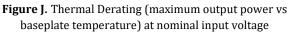






Figure H. Disabled power dissipation versus input voltage



**Figure I.** Power dissipation versus output power at minimum, nominal and maximum input voltage at nominal output voltage





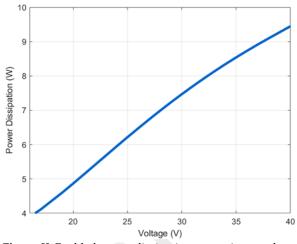



Figure K. Enabled power dissipation versus input voltage

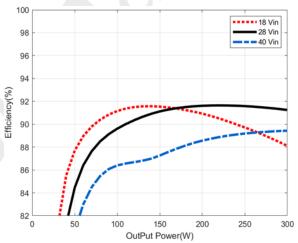



Figure L. Efficiency versus output power at minimum, nominal and maximum input voltage at nominal output voltage

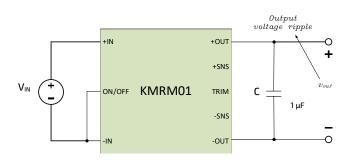



Figure M. Test set-up showing measurement point for output voltage ripple (Figure G).



# **Basic Operation and Features**

### **REMOTE ON/OFF**

The ON/OFF input, Pin 23, allows the user to control the ON and OFF states of the module. This input, which is referenced to the return terminal of the input bus (-IN), is hold as active low to keep the module at ON state. If it is pulled down to the return terminal of the input bus (-IN), converter goes into ON state. Moreover, the ON/OFF function allows the product to be turned on/off by an external device like a semiconductor or a mechanical switch.

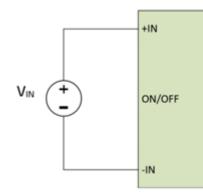



Figure N. Recommended OFF State Connection

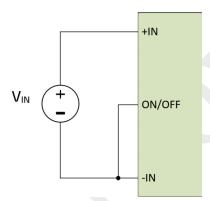



Figure O. Recommended ON State Connection

### **SENSE**

Sense terminals are placed at the load side of the converter module. The sense inputs are used to adjust and fine tune the output voltage and compensate for any error at the voltage level. If the load is away from the unit, which may require connection over a long pair of cable, connect +SNS and -SNS to the terminal of the load respectively to compensate for the voltage drop across the line.

## OUTPUT VOLTAGE TRIM

TRIM input feature of the module permits the user to adjust the output voltage across the sense leads up or down according to the trim range. To decrease the output voltage, the user should connect a resistor between TRIM and +SNS input.

For a desired decrease of the nominal output voltage, the value of the resistor should be calculated as below.

$$R_{TRIM\_DOWN} = 9.18 * \frac{\left(V_{OUT_{nom}} - V_{OUT_{desired}} * 1.99\right)}{\left(V_{OUT_{desired}} - V_{OUT_{nom}}\right)} k\Omega$$

Output Voltage resulting from trim down resistor can be calculated as below.  $R_{\text{TRIM},\text{DOWN}}$  is trim down resistor's value in  $k\Omega.$ 

$$V_{Generated} = V_{OUT_{nom}} * \frac{\left(9.18 + R_{TRIM\_DOWN}\right)}{\left(R_{TRIM\_DOWN} + 18.27\right)} V$$

To increase the output voltage, the user should connect a resistor between TRIM and -SNS input. For input voltages below 18 V at full-load, converter is not able to regulate output voltage above 28 V. So, for lower than 18 V input voltages, trimup capability is limited.

Converter is able to regulate output voltage to 28 V at full load, starting from 18 V input voltage.

For a desired increase of the nominal output voltage, the value of the resistor should be calculated as below.

$$R_{TRIM\_UP} = \frac{\left(9.18 * V_{OUT_{nom}} - V_{OUT_{desired}} * 8.25\right)}{\left(V_{OUT_{desired}} - V_{OUT_{nom}}\right)} k\Omega$$

Output Voltage resulting from trim up resistor can be calculated as below.  $R_{TRIM_{UP}}$  is trim up resistor's value in k $\Omega$ .

ļ

$$V_{Generated} = V_{OUT_{nom}} * \frac{\left(9.18 + R_{TRIM\_UP}\right)}{\left(R_{TRIM_{IIP}} + 8.25\right)} V$$

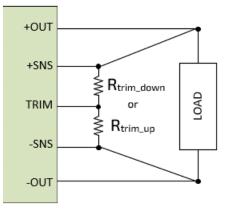



Figure P. Typical Trim Application Circuit



## DROOP CURRENT SHARING

For "droop active" models (part numbers with PR option), output voltage has a 1 V slope from full load to no load. In other words, output voltage of the module is 28.5 V for no load and 27.5 V for full load. This enables safe parallel connection of multiple models.

For connection diagram, please refer to Figure U. Recommended Application N+1 Redundant Parallel Connection Figure U. ORing diodes (simple diode or ideal diode) are required for parallel connection.



#### **PMBUS**

PM option field in KOLT Rugged Module part numbers indicate I2C capability. I2C digital interface can be used to monitor input and output parameters.

KMRM01 module provides a two-wire I2C compatible communication interface that enables host device to monitor device parameters including Input Voltage, Output Voltage and Current, Device Temperature and Status.

#### **I2C PIN DESCRIPTIONS AND RATINGS**

| Pin Name        | Absolute Maximum Voltage<br>Ratings |
|-----------------|-------------------------------------|
| PMBUS_C2        | 3.6 V                               |
| GND             | 3.6 V                               |
| PMBUS_SDA*      | 3.6 V                               |
| PMBUS_SMBALERT* | 3.6 V                               |
| PMBUS_SCL*      | 3.6 V                               |
| PMBUS_ADDRESS*  | 3.6 V                               |

\*: Internal 10kOhm pull-up resistor to 3.3 V

#### **I2C SIGNAL SPECIFICATIONS**

| Parameter                          | Min  | Тур | Max  | Unit |
|------------------------------------|------|-----|------|------|
| High Level Input Voltage           | 2.64 |     | 3.5  | V    |
| Low Level Input Voltage            | 0    |     | 1    | V    |
| SDA and SCL Bus Capacitive<br>Load |      |     | 400  | pF   |
| Bus Frequency                      |      | 100 |      | kHz  |
| Clock Low Time                     | 4.7  |     |      | μs   |
| Clock High Time                    | 4    |     |      | μs   |
| SDA and SCL Fall Time              |      |     | 300  | ns   |
| SDA and SCL Rise Time              |      |     | 1000 | ns   |
| Data Input Setup Time              | 250  |     |      | ns   |
| Start Condition Setup Time         | 4.7  |     |      | μs   |
| Start Condition Hold Time          | 4.0  |     |      | μs   |
| Stop Condition Setup Time          | 4.0  |     |      | μs   |
| Stop Condition Hold Time           | >0   |     |      | μs   |
| Bus Free Time                      | 4.7  |     |      | μs   |

#### **I2C READ OPERATION**

KMRM supports 100 kHz bus frequency and always acts as a slave. I2C Master can only read registers of KMRM01. Write to registers is not possible. Read register sequence is detailed in Figure Q.

| Master | Start | Address | w |     | Register |     | Start | Address | R |     |               | Ack |                | Nack | Stop |
|--------|-------|---------|---|-----|----------|-----|-------|---------|---|-----|---------------|-----|----------------|------|------|
| Slave  |       |         |   | Ack |          | Ack |       |         |   | Ack | Data<br>[7-0] |     | Data<br>[15-8] |      |      |

#### Figure Q. Read Register Operation

KMRM01 modules incorporate internal 10kOhm pull-up resistors to 3.3V on SDA and SCL lines.

Depending on the bus load SDA and SCL lines may require additional pull-up resistors to 2.8 to 3.5V external supply. Absolute maximum capacitive load on SDA and SCL lines are 400pF.

#### **I2C ID SELECTION**

I2C address of device is combination of physical address and Read/Write bit. Default I2C physical address for a KMRM01 rugged module is 0x2. Alternate physical I2C address of 0x6 is selected when PMBUS\_ADDRESS pin tied to Digital Ground (GND) pin.

| PMBUS_ADDRESS | I2C Address Byte |       |  |  |  |  |
|---------------|------------------|-------|--|--|--|--|
| Pin State     | Read             | Write |  |  |  |  |
| Float         | 0x3              | 0x2   |  |  |  |  |
| Tied to GND   | 0x7              | 0x6   |  |  |  |  |

#### **12C REGISTERS**

I2C digital interface is used to monitor input, output and status information of converter.

Digital configuration via Write to registers with I2C interface feature for KMRM01 modules will be implemented in the future.

| Register<br>Address | R/W          | Register<br>Name | Scale<br>Factor | Description                           |
|---------------------|--------------|------------------|-----------------|---------------------------------------|
| 0x79                | Read<br>Only | STS              | -               | Status Register                       |
| 0x88                | Read<br>Only | VIN              | 1mV/LSB         | Input Voltage<br>Reading<br>Register  |
| 0x8B                | Read<br>Only | VOUT             | 1mV/LSB         | Output Voltage<br>Reading<br>Register |
| 0x8C                | Read<br>Only | IOUT             | 1mA/LSB         | Output Current<br>Reading<br>Register |
| 0x8D                | Read<br>Only | ТЕМР             | 1 °C/LSB        | Temperature<br>Reading<br>Register    |



#### STATUS REGISTER (STS) 0x79

Status Register (0x79) is a 16-bit register containing status information and last logged fault of rugged module.

|          | Status Register (STS) |    |     |     |      |     |     |  |  |  |  |  |
|----------|-----------------------|----|-----|-----|------|-----|-----|--|--|--|--|--|
| 15       | 14                    | 13 | 12  | 11  | 10   | 9   | 8   |  |  |  |  |  |
|          | Reserve               | d  | LOT | LOC | LREG | LOV | LUV |  |  |  |  |  |
| 7        | 6 5                   |    | 4   | 3   | 2    | 1   | 0   |  |  |  |  |  |
| Reserved |                       |    | ОТ  | OC  | REG  | OV  | UV  |  |  |  |  |  |

Eight least significant bits (LSBs) of STS (0x79) holds status information of the device. If any bit is set to 1, this indicates output is turned off due to fault conditions described in Status Register Fields table.

Eight most significant bits (MSBs) of STS (0x79) holds last fault log since power up. Fault log can only be cleared by powering down the converter or by pulling Remote ON/OFF pin to OFF state.

|       | Status Register (STS) Fields |       |                                                                                                                                            |  |  |  |
|-------|------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Bits  | Field                        | Reset | Description                                                                                                                                |  |  |  |
| 0     | UV                           | 0     | Input Under Voltage Fault bit                                                                                                              |  |  |  |
|       |                              |       | 1: Input Voltage is lower than "Under<br>Voltage Turn-Off Threshold".                                                                      |  |  |  |
|       |                              |       | 0: Input Voltage is higher than<br>"Under Voltage Turn-On Threshold".                                                                      |  |  |  |
| 1     | OV                           | 0     | Input Over Voltage Fault bit                                                                                                               |  |  |  |
|       |                              |       | 1: Input Voltage is higher than "Over<br>Voltage Turn-Off Threshold".                                                                      |  |  |  |
|       |                              |       | 0: Input Voltage is lower than "Over Voltage Turn-On Threshold".                                                                           |  |  |  |
| 2     | REG                          | 0     | Regulation Fault bit                                                                                                                       |  |  |  |
|       |                              |       | 1: Output Voltage is lower than<br>"Output DC Current-Limit Shutdown<br>Voltage" or higher than "Output Over<br>Voltage Protection Limit". |  |  |  |
|       |                              |       | 0: Output Voltage is OK.                                                                                                                   |  |  |  |
| 3     | OC                           | 0     | Output Over Current Fault bit                                                                                                              |  |  |  |
|       |                              |       | 1: Output Current is higher than<br>"Output Current Shutdown Limit".                                                                       |  |  |  |
|       |                              |       | 0: Output Current is in operating limits.                                                                                                  |  |  |  |
| 4     | ОТ                           | 0     | Over Temperature Fault bit                                                                                                                 |  |  |  |
|       |                              |       | 1: Temperature is higher than "Over<br>Temperature Shutdown Trip Point".                                                                   |  |  |  |
|       |                              |       | 0: Temperature is in operating limits.                                                                                                     |  |  |  |
| 5-7   | Res                          | 0     | Reserved                                                                                                                                   |  |  |  |
| 8     | LUV                          | 0     | Logged Input Under Voltage Fault bit                                                                                                       |  |  |  |
| 9     | LOV                          | 0     | Logged Input Over Voltage Fault bit                                                                                                        |  |  |  |
| 10    | LREG                         | 0     | Logged Regulation Fault bit                                                                                                                |  |  |  |
| 11    | LOC                          | 0     | Logged Output Over Current Fault bit                                                                                                       |  |  |  |
| 12    | LOT                          | 0     | Logged Over Temperature Fault bit                                                                                                          |  |  |  |
| 13-15 | Res                          | 0     | Reserved                                                                                                                                   |  |  |  |

#### INPUT VOLTAGE REGISTER (VIN) 0x88

Input Voltage Register (0x88) is a 16-bit register containing unsigned input voltage reading information of rugged module. This register has a scale factor of 1 mV/LSB.

| Input Voltage Register (VIN) |            |    |    |    |    |   |   |  |
|------------------------------|------------|----|----|----|----|---|---|--|
| 15                           | 14         | 13 | 12 | 11 | 10 | 9 | 8 |  |
|                              | VIN [15-8] |    |    |    |    |   |   |  |
| 7                            | 6          | 5  | 4  | 3  | 2  | 1 | 0 |  |
|                              | VIN [7-0]  |    |    |    |    |   |   |  |

Lower 8-bit part of VIN (0x88) register holds eight least significant bits (LSBs) of input voltage reading.

Upper 8-bit part of VIN (0x88) register holds eight most significant bits (MSBs) of input voltage reading.

| Input Voltage Register (VIN) Fields |       |       |                                                                                     |  |  |
|-------------------------------------|-------|-------|-------------------------------------------------------------------------------------|--|--|
| Bits                                | Field | Reset | Description                                                                         |  |  |
| 0-15                                | VIN   | 0     | Input Voltage Reading<br>0 = 0 V<br>1 = 0.001 V<br>28000 = 28.0 V<br>50000 = 50.0 V |  |  |

#### OUTPUT VOLTAGE REGISTER (VOUT) 0x8B

Output Voltage Register (0x8B) is a 16-bit register containing unsigned output voltage reading information of rugged module. This register has a scale factor of 1 mV/LSB.

|    | Output Voltage Register (VOUT) |    |    |    |    |   |   |  |
|----|--------------------------------|----|----|----|----|---|---|--|
| 15 | 14                             | 13 | 12 | 11 | 10 | 9 | 8 |  |
|    | VOUT [15-8]                    |    |    |    |    |   |   |  |
| 7  | 6                              | 5  | 4  | 3  | 2  | 1 | 0 |  |
|    | VOUT [7-0]                     |    |    |    |    |   |   |  |

Lower 8-bit part of VOUT (0x8B) register holds eight least significant bits (LSBs) of output voltage reading.

Upper 8-bit part of VOUT (0x8B) register holds eight most significant bits (MSBs) of output voltage reading.

|      | Output Voltage Register (VOUT) Fields |       |                                                                                      |  |  |
|------|---------------------------------------|-------|--------------------------------------------------------------------------------------|--|--|
| Bits | Field                                 | Reset | Description                                                                          |  |  |
| 0-15 | VOUT                                  | 0     | Output Voltage Reading<br>0 = 0 V<br>1 = 0.001 V<br>28000 = 28.0 V<br>50000 = 50.0 V |  |  |



#### OUTPUT CURRENT REGISTER (IOUT) 0x8C

Output Current Register (0x8C) is a 16-bit register containing unsigned output current reading information of rugged module. This register has a scale factor of 1 mV/LSB.

| Output Current Register (IOUT) |             |    |    |    |    |   |   |  |
|--------------------------------|-------------|----|----|----|----|---|---|--|
| 15                             | 14          | 13 | 12 | 11 | 10 | 9 | 8 |  |
|                                | IOUT [15-8] |    |    |    |    |   |   |  |
| 7                              | 6           | 5  | 4  | 3  | 2  | 1 | 0 |  |
| IOUT [7-0]                     |             |    |    |    |    |   |   |  |

Lower 8-bit part of IOUT (0x8C) register holds eight least significant bits (LSBs) of output current reading.

Upper 8-bit part of IOUT (0x8C) register holds eight most significant bits (MSBs) of output current reading.

|      | Output Current Register (IOUT) Fields |       |                                                                                     |  |  |
|------|---------------------------------------|-------|-------------------------------------------------------------------------------------|--|--|
| Bits | Field                                 | Reset | Description                                                                         |  |  |
| 0-15 | IOUT                                  | 0     | Output Current Reading<br>0 = 0 A<br>1 = 0.001 A<br>10700 = 10.7 A<br>16500= 16.5 A |  |  |

#### TEMPERATURE REGISTER (TEMP) 0x8D

Temperature Register (0x8D) is a 16-bit register containing temperature reading information of rugged module in twos complement format. This register has a scale factor of 1 °C/LSB

| Temperature Register (TEMP) |             |    |    |    |    |   |   |
|-----------------------------|-------------|----|----|----|----|---|---|
| 15                          | 14          | 13 | 12 | 11 | 10 | 9 | 8 |
|                             | TEMP [15-8] |    |    |    |    |   |   |
| 7                           | 6           | 5  | 4  | 3  | 2  | 1 | 0 |
| TEMP [7-0]                  |             |    |    |    |    |   |   |

Lower 8-bit part of TEMP (0x8D) register holds eight least significant bits (LSBs) of temperature reading.

Upper 8-bit part of TEMP (0x8D) register holds eight most significant bits (MSBs) of temperature reading.

|      | Temperature Register (TEMP) Fields |       |                                                                                           |  |  |  |
|------|------------------------------------|-------|-------------------------------------------------------------------------------------------|--|--|--|
| Bits | Field                              | Reset | Description                                                                               |  |  |  |
| 0-15 | TEMP                               | 0     | Temperature Reading<br>155: 155 °C<br>1: 1 °C<br>0: 0 °C<br>65535: -1 °C<br>65481: -55 °C |  |  |  |



# **Protection Features**

### **Reverse Input Protection**

Converter module stays unharmed even if it is subjected to reverse input voltages. The associated limits are given in Input Characteristics Table.

## Input Under Voltage Lockout

Converter module protects itself by ceasing operation when input goes below "Under Voltage Turn-Off Threshold". It resumes operation when input rises above "Under Voltage Turn-On Threshold". The associated limits are given in Input Characteristics Table.

## Input Over Voltage Lockout

Converter module protects itself by ceasing operation when input goes above "Over Voltage Turn-Off Threshold". It resumes operation when input falls below "Over Voltage Turn-On Threshold". The associated limits are given in Input Characteristics Table.

## **Output Current Limit**

If the output current exceeds the "Output Current Limit" value, the converter will immediately stop operating. The control waits for cooldown period, resets the fault status automatically and resumes operation with soft start. If the fault condition is still persisting, its shuts off again. This sequence is repeated indefinitely. The associated limits are given in Output Characteristics Table.

### **Output Over Voltage Protection**

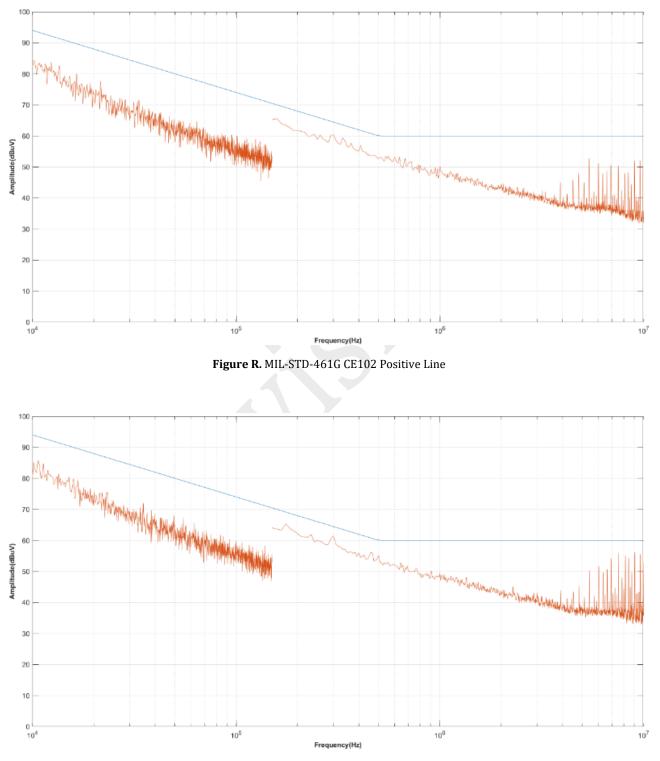
If the output voltage exceeds the "Output Over Voltage-Protection" value the converter outputs are disabled immediately and retries after cooldown period. The "Output Over Voltage Protection Limit" is 120% of Output Voltage. If trim up or down is used protection limit will change according to output voltage setting.

### **Output Over Current Protection**

If the current voltage exceeds the "Output Current Shutdown Limit" value the converter outputs are disabled immediately and retries after cooldown period.

## Short Circuit Protection

The short circuit condition is an extreme case of the Output Current Limit condition. When output Voltage drops below "Output DC Current-Limit Shutdown Voltage " limit, the converter outputs are disabled immediately and retries after cooldown period. The "Output DC Current-Limit Shutdown Voltage " is 50% of Output Voltage. If trim up or down is used protection limit will change according to output voltage setting.


### Thermal Shutdown

The brick has a thermistor located at the hottest point inside the module. The thermal shutdown circuit is designed to turn the converter off when the temperature at the sensed location goes above the "Over Temperature Shutdown" limit. It locks itself and waits to cool off. Converter then resumes operation automatically when the temperature of the sensed location falls below the trip point by the amount equal to the "Over Temperature Shutdown Hysteresis". The associated limits are given in General Characteristics Table.



## MIL-STD-461E CE102 Test Results

Following EMI measurements have been performed in KOLT's EMI test laboratory using Rohde&Schwarz FPC1000 Spectrum Analyzer. KMRM01 loaded to supply 300 W to a resistive load at nominal input and output voltage. No external EMI filter is needed.







# **Application Considerations**

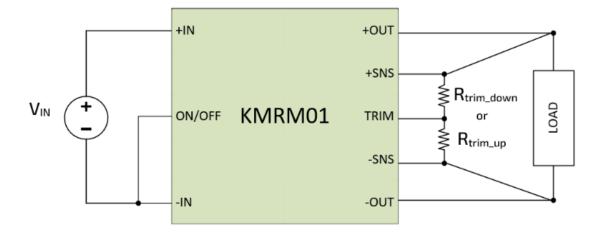



Figure T. Typical Application

NOTE: If the output voltage is to be used in its default state, there is no need to use trim resistors.

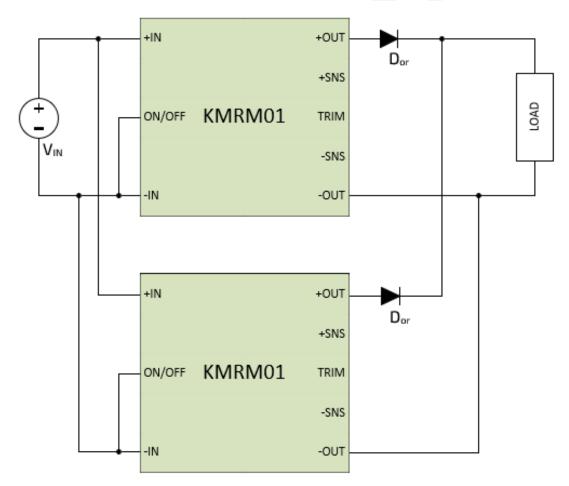



Figure U. Recommended Application N+1 Redundant Parallel Connection



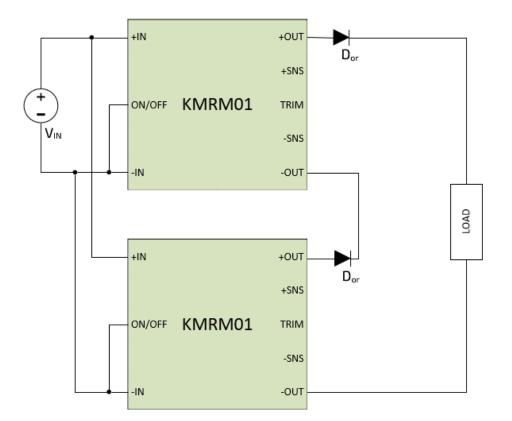
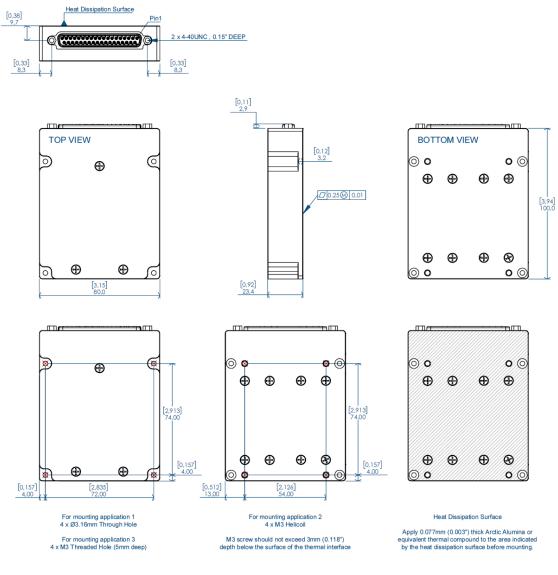




Figure V. Recommended Application Series Connection

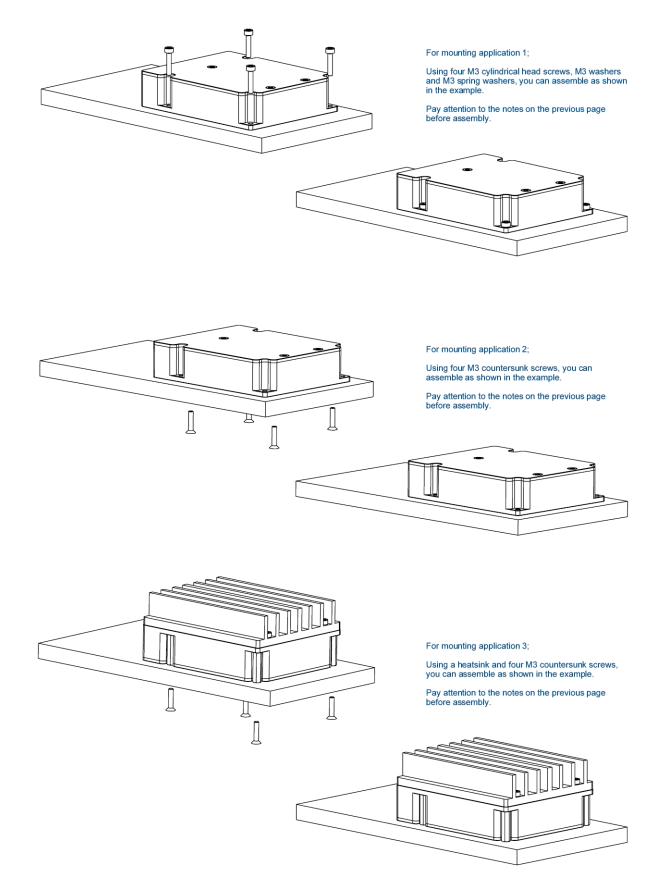
Dor: Can be either an ORing diode or ideal diode driver circuit



# **Mechanical Drawing**



NOTES:


- APPLIED TORQUE PER M3 SCREW
   1.5Nm (13in-lb) RECOMMENDED
   [1.6Nm (14in-lb) LIMIT].
- RECOMMENDED COOLING
   METHOD: CONDUCTION COOLED.
- THERMAL INTERFACE FLATNESS TOLERANCE IS 0.25mm (0.01") TIR FOR SURFACE.
- CONNECTOR MPN: 164A17969X
   MATE MPN: 163A11099X or EQ.
- MATE MPN: 163A11099X or EQ.
   BACKSHELL: 165X02719X or EQ.
- BACKSHELL: 165X02719X or EQ
   CASE MATERIAL: AL6061-T6
- CASE MATERIAL: AL0061-16
   FINISH: MIL-C-5541 / Type II, Class 1A
- WEIGHT: 340g (12oz)
- ALL DIMENSIONS IN MILIMETERS
- [inches] TOLERANCES: X.Xmm ±0.5mm (X.XXIN ±0.020) X.XXmm ±0.25mm (X.XXXIN ±0.010)

| Pin                                | Name          | Function                         |
|------------------------------------|---------------|----------------------------------|
| 4                                  | CHASSIS       | Earth                            |
| 1, 3, 21                           | +IN           | Positive input voltage           |
| 23                                 | ON/OFF        | Remote on/off, referenced to -IN |
| 2, 20, 22                          | -IN           | Input return                     |
| 11, 13, 15, 17, 29, 30, 32, 34, 36 | -OUT          | Output return                    |
| 27                                 | -SNS          | Negative remote sense            |
| 8                                  | TRIM          | Output voltage trim              |
| 26                                 | +SNS          | Positive remote sense            |
| 12, 14, 16, 18, 19, 31, 33, 35, 37 | +OUT          | Positive output voltage          |
|                                    |               |                                  |
| 25*                                | PMBUS_SDA     | I2C Data                         |
| 24*                                | PMBUS_SCL     | I2C Clock                        |
| 5*                                 | PMBUS_ADDRESS | I2C Address selection            |
|                                    |               |                                  |
| 6, 7, 9, 10, 28                    | NC            | DO NOT CONNECT                   |
|                                    |               |                                  |
|                                    |               |                                  |
|                                    |               |                                  |

\*: AVAILABLE ON PMBUS OPTION (ALL REFERENCED TO -OUT)



# **Mounting Applications**





# Part Ordering Information

| Family | Input Voltage | Power | Output Voltage | Package       | <b>Option Field</b>     |
|--------|---------------|-------|----------------|---------------|-------------------------|
| KMRM01 | DC28          | P300  | DC28           | СМ            | PM: PMBUS               |
|        | 28 VDC        | 300 W | 28 VDC         | Custom Module | <b>PR:</b> Droop Active |

| Ordering Number                | Communication                       | Droop   |
|--------------------------------|-------------------------------------|---------|
| KMRM01-DC28-P300-DC28-CM       | No communication capability         | Passive |
| KMRM01-DC28-P300-DC28-CM-PR    | No communication capability         | Active  |
| KMRM01-DC28-P300-DC28-CM-PM    | With PMBUS communication capability | Passive |
| KMRM01-DC28-P300-DC28-CM-PM-PR | With PMBUS communication capability | Active  |



# **Revision History**

| Document<br>Number | Revision | Date       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Page<br>Number(s)    |
|--------------------|----------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 109392             | A-PC1    | 17.03.2023 | Initial Prototype Release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                    |
| 109392             | A-PC2    | 04.10.2023 | Second Prototype Release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | All                  |
| 109392             | A-PC3    | 08.11.2023 | Third Prototype Release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | All                  |
| 109392             | 01       | 18.09.2024 | Initial Release- Minimum Operating Input Voltage is updated from 16 V to 18 V Input Under Voltage Turn-On Threshold and Turn-Off Threshold tolerancesis updated from ± 0.5 V to ± 1 V Input Over Voltage Turn-On Threshold and Turn-Off Threshold tolerances isupdated from ± 0.5 V to ± 1 V Input Over Voltage Turn-Off is updated from 40.5 V to 41.5 V Figure A is updated Minimum Efficiency is updated from 91% to 90% Output current limit updated to minimum instead of maximum Input to Output Isolation Voltage is updated from 2250 VDC to 1000 VDC Input to Chassis Isolation Voltage is updated from 2250 VDC to 1000 VDC Output to Chassis Isolation Voltage is updated from 2250 VDC to 1000 VDC Output to Base Plate Insulation Resistance is updated from >45 GΩ to 1 GΩ Input to Base Plate Insulation Resistance is removed MTBF values is added for Ground Benign and Ground Mobile Protection Features title is updated ± 20g tolerance is added to weight Output Voltage Line Regulation increased to 2% from 0.2% | 1, 2<br>3, 4<br>8, 9 |





www.**koltpower**.com

## KOLT Türkiye

salesturkiye@koltpower.com

KOLT Mühendislik A.Ş.

Serhat Mah. 1148. Sok. No:1B/1 06374 Yenimahalle, Ankara Türkiye

## KOLT Europe

saleseurope@koltpower.com

KOLT Power Ltd.

Fareham Innovation Centre Merlin House. 4 Meteor way. Daedalus Drive. Fareham. Lee-On-Solent PO13 9FU. United Kingdom

## **KOLT North America**

salesna@koltpower.com

KOEN, Inc.

2445 Augustine Dr. Suite 150 Santa Clara, CA 95054 United States

## Connect with us



kolt-inc



kolt.inc



KOLTEngineering



kolthq

The information provided in this datasheet is believed to be accurate and reliable. However, KOLT assumes no responsibility for any consequences arising from its use, nor for any infringement of patents or other rights of third parties that may result from its use. These products are sold only under KOLT's general terms and conditions of sale, unless otherwise specified in writing. Specifications are subject to change without notice. All rights reserved.